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In recent years, Wall Street has been witnessing a
renaissance as market analysis has begun to leave the
traditional rule-of-thumb era and begins to emerge as a
science. Known by the name of “efficient market theory,”
this new school of thought has been developing over the
past two decades at the University of Chicago and is now
gradually catching on with the more liberal sector of the
financial community. Applied to stock market behavior,
this theory states that any changes in individual stock
prices occur in essentially a random fashion or, in other
words, that stock prices appear to follow a random walk
(Lorie 1973). Hence, any technical analysis of individual
stock price movements undertaken for speculative pur-
poses is essentially futile. The “‘semi-strong” form of the
theory asserts that current prices of stocks fully reflect
public knowledge of the underlying companies and that
efforts to obtain and analyze such knowledge do not aid
one in reaping superior returns.

Efficient market theory has rather conclusively
explained micro-market behavior, such as the movements
of individual securities or short term movements of the
whole market, but it has encountered difficulty in explain-
ing macroscopic long term movements. In the long run, the
market apparently exhibits a systematic trend-cycle
behavior of a non-random nature; and as Julius Shiskin
(1968, pp. 670-71) points out,

(1) while irregular fluctuations dominate the month-to-month
movements in stock prices (and most other economic indi-
cators) systematic movements dominate when longer span
comparisons are made; (2) the average duration of a run in
stock prices is significantly higher than that of a random series,
even after the strong upward trend of recent years is
eliminated; (3) diffusion indexes of stock prices computed
over short spans have the irregular behavior characteristic of
random series, but show systematic movements with clear
cyclical amplitudes and consistent leads over aggregate stock
price fluctuations when the span of comparison is extended;
and (4) most important of all, stock prices consistently
conform to and lead broad expansions and contractions in
aggregaté economic activity (the composite of such measures
as total -employment, income, production and trade); this
feature of stock price fluctuations distinguishes it from
cumulated random series (i.e., series with random first
differences) which also have systematic movements in some
other ways similar to those of stock price fluctuations. These
systematic movements in stock prices are difficult to predict
because, unlike mathematical curves, they vary in amplitude,
pattern, and duration, and they are sometimes obscured by
irregular fluctuations.

Shiskin (1968, p. 675) makes the following observa-
tions about the average duration of a run in stock market
prices:

For a random series, short runs occur much more frequently
than long runs, and the expected average duration of run is
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only 1.5 (months, quarters, or whatever the time unit in which
the series is expressed). For random series with 120 observa-
tions (i.e., 10 years in monthly data) the average duration of
run falls within the range 1.36 and 1.75 about 95 percent of
the time.

The average duration of run for stock prices is 2.37, well
above the limits for a random series. Since stock prices had a
pronounced upward trend from 1948 to 1966, the average
duration of a run was also computed for this series after the
trend was eliminated. It proved to be 2.30, also well above the
limits for a random series.

Figures 1 and 2 show a comparison of diffusion indexes of
stock prices to diffusion indexes of 24 artificial series with
random first differences. The former plots show significant
systematic behavior especially for spans greater than 3
months.

Shiskin has examined the relation of the stock market
to other types of economic series, such as business cycles,
using probability tests. He has found that during the
period from 1873 to date stock prices have led the
National Bureau of Economic Research reference turning
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Fig. 1. Stock prices and diffusion indexes of stock prices over
1, 3, 6,9, and 12 month spans. (From J. Shiskin in J. Lorie and R.
Brealey, Modern Developments in Investment Management, Praeger,
1968, p. 676.)
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Fig. 2. Diffusion indexes of 24 artificial series with random
first differences computed over 1, 3, 5, 9, and 12 month spans.
(From J. Shiskin, ibid., p. 677.)

dates 33 times; they were coincident twice, and they
lagged five times. The probability of having this many
leads, as a result of chance, is quite remote—less than
10-%,

Stock prices have long been identified as a leading indicator of
business activity by students of cyclical analysis. This is
intended to mean that usually stock prices turn down in
advance of a business cycle trough. Such an orderly timing
sequence would exist only in series with systematic economic
relations to each other. (p. 687)

A convincing economic explanation of why stock prices
lead aggregate economic activity is needed to lend credence to
the empirical findings. This is, of course, a very large subject in
itself. All I am prepared to say here is that the relationship
between stock prices and aggregate economic activity probably
is indirect through causal relations with other economic
activities, for example, the money supply and profits, and that
it is a complex one. . . (p. 686)

An explanation of why these systematic relations
between stock prices and aggregate economic activity exist
has not been provided by efficient market theory. In this
paper, we will attempt to shed some light on some of these
questions by employing a general systems approach in our
examination of macroscopic stock market behavior. This
illuminating approach views the stock market as an
economic species whose behavior conforms to much the
same laws that govern biologic species in an ecosystem. It
will be found that the predator-prey fluctuations observed
in the populations of biologic species are also observed to

occur in the pricing of economic species such as the stock
market. By employing a biologic model whereby the stock
market and other economic series are viewed as interacting
species, phenomena, such as those pointed out by Shiskin
above, become more easily understood. The systems
approach potentially offers a new horizon of understand-
ing in the related fields of economics and finance.

THE BIOLOGIC ANALOGY OF THE STOCK MARKET

The similarity of economic processes to biological
processes has been long recognized by many notable
economists and has been subject to frequent analysis from
a general systems viewpoint (see Boulding 1956, Gerard
1956, Goldsmith 1971, and Spencer 1906). Reassured of
the intuitive validity of this approach, let us begin by
drawing an analogy between the basic competitive proc-
esses which take place both in the ecosystem and in the
economy.

In the ecosystem, biologic species compete for the
available organic matter. Each species attempts to organize
this matter by augmenting its population. In the process,
species interact with each other, indirectly by competing
for a common food supply or directly through predator-
prey interactions. Thus each species is both eating and
being eaten. All species are struggling to organize organic
matter and all are woven into a competitive fabric called
the ecosystem.

By analogy, in the economy, all economic species are
competing to structure money, rather than matter, into
their systems. Whereas a biologic species attempts to
increase its numbers relative to other species, an economic
species attempts to increase its value relative to other
species. Again, predator-prey behavior should be observed.
For example, let us view the stock market as an economic
species coexisting and interacting with other economic
species, such as the bond market, commodities market,
banking system, foreign markets, personal hoarding, etc.
When investors shift their holdings from say, the bond
market to the stock market, the stock market takes on the
role of the predator species, and the bond market is here
the prey. The reverse is true if investors begin investing
more in the bond market. From a simplified view, when a
species structures money into itself and augments in value,
it has removed money from competing economic species
which have consequently declined in value. A species’
value is determined each instant by the amount of money
it has structured relative to the species. Money may be
viewed as a fluid that is transferred between competing
economic species, its flow pattern being influenced by the
value which each economic species attains.

When the economy is in the quiescent steady state,
each economic species should be priced at its “correct”
value, equilibrium value. Under such conditions, biologic
species would maintain their populations at equilibrial
levels. However, the steady state among biologic species
having predator-prey interactions is the exception rather
than the rule, and the same is found to be true in
economics. Any slight fluctuation in population (or price)
is propagated through time as an oscillation, due to the
interactive relationship existing between the species.
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The economy may be viewed as an “ensemble” of
species whose individual populations (prices) are in per-
petual oscillation, much like the oscillation of spatial
locations of molecules in a gas. Just as a gas obeys the
thermodynamic laws of a canonical ensemble, so too the
ecosystem obeys macroscopic dynamic laws. Properties
such as temperature, heat flow, heat capacity, and entropy
find their analogs in the ecosystem or economy.

Of these properties, the concept most dealt with here
will be temperature. Taking, for example, a biologic
ecosystem of interacting species, the temperature of a
species measures the degree of fluctuation in its population
size. The greater the amplitude of these fluctuations, the
greater is the specie’s temperature. Analogously, the
temperature of the stock market is a parameter dependent
upon the amplitudes of the market trend fluctuations. (As
will be later seen, market temperature may be taken as the
macroscopic counterpart to the market factor variance,
orm -) Depending on the circumstances, temperature may
refer either to a particular species in the ensemble or to the
ensemble as a whole. Such references may be made
interchangeably when the species is in thermodynamic
equilibrium with its environment.

Having briefly sketched out the analogy which we are
to employ, we will now turn to the field of biology to gain
an understanding of the mechanics of predator-prey
relationships.

THE VOLTERRA-LOTKA PREDATOR-PREY MODEL

A typical example of a predator-prey relationship
observed in nature among hares and lynx is shown in
Figure 3, where it is seen that their populations are in
oscillation. The basic predator-prey model, proposed
independently by both B. Volterra (1931) and A. J. Lotka
(1925), assumes for simplicity that the inter-species
interaction is restricted to the two species under considera-
tion. Such a situation has been reproduced experimentally
in the test tube (see Figure 4-c). The two species under
consideration here are two species of paramecium. The
predator species, indicated by the dark dotted line, feeds
on the prey species, indicated by the white line. The prey
species in turn is fed on a constant supply of food.
Obviously, if one of the two species becomes extinct, the
other will follow suit, and the predator-prey relationship
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Redrawn, by permission, from D A Maclulich 1937, University of Toronto Studies, Biological Series No. 43

Fig. 3. Oscillations in populations of the snowshoe hare and
lynx based on pelts received by the Hudson Bay Company. (From E.
J. Kormondy, Concepts of Ecology, Prentice-Hall, 1969, p. 96.)
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Fig. 4. Prey-predator relationships in two ciliated protozoans.
(From E. J. Kormondy, ibid., p. 94.)

will cease to exist. Thus two conditions must be present to
permit the existence of a predator-prey relationship: (1) a
heterogeneous environment and (2)species migration.
Figure 4-a shows the same test tube experiment without a
heterogeneous environment and without migration. Figure
4-b shows the same experiment without migration but
with a heterogeneous environment. Figure 4-c shows the
same experiment performed when both conditions are
fulfilled. Immigration was effected by introducing a pair of
paramecia into the test tube every three days (indicated by
arrows).

One characteristic of the predator-prey relationship is
that the population peaks of the prey species preceed
those of the predator species. However, in Figure 3, the
peaks and troughs of the respective species are in phase.
This may be because we are observing the relationship of
two species which are embedded in an ecosystem and
which are probably interacting with other species.

Edward Kerner (1957, pp. 125-26) describes Vol-
terra’s mathematical representation of predator-prey
behavior in the following way:
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The equations proposed by Volterra to describe the
behavior in time of n biological species in interaction, having

populations Ny, N, ..., Np,are
dN;
’d't'- =N, + 20.“1\ N;. @)

The first term on the right-hand side expresses how each
species propagates if left to itself in a given environment and
no other species interacts with it. It provides an exponential
fall or rise of N; in time according as the coefficient of
self-accretion €; (natural birth minus death rate) is negative or
positive. The remaining terms express the interaction of
species r with all other species s, stating that the increase or
decrease of N; per unit time is effectively proportional to the
number of encounters per second between r and any s, taken
to be measured by the product N;N5. To account for the
one-sided nature of the encounters, wherein if r gains because
of the encounter then s must lose, the interaction parameters
as; are antisymmetric; a;s =-ag,. The positive quantities 8,1
are Volterra’s “equivalent numbers” such that in the binary
encounters r,s the ratio of the number of s’s lost (or gained)
per second to the number of r’s gained (or lost) per second is

Bs1/By1

Proceeding in this manner, however, Volterra was
able to obtain solutions only for the case of two
interacting species. The mathematical problem becomes
extraordinarily complex for three or more species. How-
ever, it is this many-bodied problem that interests us, being
the most common in nature.

Kerner has developed an ingenious approach for
solving the problem of many interactions. By making
certain alterations in Volterra’s system of equations,
Kerner treats the interacting system as a canonical ensem-
ble and uses statistical mechanical tools. Since his work is
mathematically quite sophisticated, only a very brief and
sketchy summary will be presented here. For a more
thorough presentation of the mathematics, see Kerner
(1957 and 1959).

To begin, a new variable is introduced into Volterra’s
equations, v, = log N;/q, where q, is the steady state value,
or average value, of the population size N;. With this
substitution, Eq. (i) is transformed to

B, v, = :Zas,qs(e"s - 1), where v = dv/dt. (ii)

When Volterra’s equations are represented in this form as a
Gibbs microcanonical ensemble, a thermodynamic descrip-
tion can be obtained.

The purpose of having introduced the particular variables v, is
to secure a Liouville’s theorem. Consider a large number of
copies, a Gibbs ensemble of biological associations each of the
same character and each controlled by the same differential
equations (ii) but having all variety of initial values of v,. In
the Cartesian space of the v, (phase space) the configuration of
each copy is represented by a point, the ensemble by an
ensemble of points. The points are propelled in phase space by
the motional equations (ii). When taken to be sufficiently
numerous the points constitute a fluid of say, density p (v,
V2, ..., Vp), and velocity V=(v;, v,, ..., v;) at this
point. Since fluid is neither created nor destroyed we must
have the hydrodynamical equation of continuity,

3
“+divpVE—-+3- B0%),

8 A , =0, (iif)

ap

at
There follows Liouville’s theorem of the conservation of
density in phase,

~E—~’+2\},é;‘=0 @iv)
T

stating that as one goes along with the motion of ore system
point the density in its neighborhood remains invariable.
(Kerner 1957, pp. 127-28.)

Eq. (ii) is manipulated to obtain £ §; q, v, (e'r - 1)
=0 which upon integration yields a universal single valued
constant of motion, G (Kerner 1957, p. 128),

G =27, (e'r - v;) = constant, where 7, =8, q,. (V)

We may ask now about the behavior of a part, or
component, consisting in, say, only u of the total n species, of
an association. The component does not have its G constant
throughout time but exchanges G with the rest of the
association, only the total G being conserved. Corresponding
to the points on the surface G =G in the microcanonical
distribution are points in the subspace of dimension u
representing configurations of the component.

How are these component points distributed? The
answer is a basic proposition in statistical mechanics: they are
distributed according to the law p, =el¥ ~Cu)/®  defining
Gibbs’ canonical ensemble.

The importance of the canonical ensemble in physics
comes from the fact that it is a representative ensembel with a
capacity for describing not isolated systems with a fixed
energy but those which are in thermal equilibrium with their
surroundings, continually exchanging energy with them. In the
theoretical construction the residual system, that of n- u
degrees of freedom left over from the original one when the
component u is separated for individual study, holds the
position of being the “heat bath™ in which the component is
immersed. The modulus 6 represents the thermodynamic
temperature, and ¢ the free energy of a system in thermo-
dynamic equilibrium. Through this same door we enter into a
‘thermodynamic’ description of biological associations.
(Kerner 1957, pp. 132-33.)

A derivation for temperature gives (from Kerner
1957, p. 136)

0 =1/ (N; - q,). (vi)

In other words, the temperature measures, in one number
common to all species, the mean square deviations of the
populations from their stationary values q,.

A more testable quantity, 1/x, (Kerner 1959, p. 233),
is given solely in terms of N; and q, which are both
experimental observables, N; being a population size
coordinate at a given time, and q, being the average
population size. *

% =0/m = (N, - 9,)%/a? =(N;/q, - 1) In (N;/q,). (vii)

*Note that § has no subscript since all specxes are assumed to have the same temperature. This is true of biologic associations in
thermodynamic equilibrium, i.e. ones that have been in existence for many cycles. However, x, is species dependent since it incorporates the

factor 7, = f; g, where x; = 7,/6.
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THE PREDATOR-PREY RELATIONSHIP IN STOCK MARKET 185

Given that n, = N, /q, (i.e., log n; = v;), the probabil-
ity, P (n;) dn,, that a species will have its n, in n; as
opposed to n; +dn, is calculated. It is found to be
distributed analogously to the Maxwell-Boltzmann distri-
bution which describes the velocity structure of molecules
in a gas. For high temperatures, this distribution is skewed;
however, at sufficiently small 8 it is sensibly normal. (This
is opposite to the behavior found in the Maxwell-
Boltzmann distribution where the distribution becomes
increasingly skewed at lower temperatures.)

Kerner also defines quantities such as the free energy,
Y, and internal energy, G; quantities such as the “heat
capacity”, C=0G/30 and the “entropy”, S=G- ¥/6.
Figures 5 through 8 show plots of these quantities as
functions of 1/x, = 0/r,.

These thermodynamic concepts make it easier to
understand behavior such as the tendency for biologic
associations in non-equilibrium states to decline to equilib-
rium ones of maximal entropy. Also, the biological analog
of heat flow becomes clear.

Zero temperature corresponds to the completely *“quiet”
stationary state of biological association. The temperature is,
so to speak, a kind of indicator of the level of excitation of the
association from its stationary state. Its greater significance is,
according to an established theorem, that it tells the preferred
direction of flow of G from one association to another weakly
coupled to it: on the average the association with higher 6 will
lose G and decrease its 6, and inversely for the low
association. (Kerner 1957, p. 136.)

TESTABLE PROPERTIES OF
PREDATOR-PREY RELATIONSHIPS

In the previous section we presented an equation for
deriving the temperature-like quantity 1/x, from the
experimentally observable variables N, and q;. Here we
will examine a few other observational techniques for
deriving X,, which will serve as a cross check.

v
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Fig. 5. Free energy per species for fixed 7 and variable 6.
(From E. H. Kerner, Bulletin of Mathematical Biophysics, 19, 1957,
pp. 140-43.)

g

T

15+

10—

5L

0 | | 1

0 5 10 15

8
T

Fig. 6. Single-species contribution to internal energy, giving (_‘,
as function of association temperature 6 for fixed intrinsic tempera-
ture 7. (From E. H. Kerner, ibid.)
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Fig. 7. Heat capacity per species as function of association
temperature 6. (From E. H. Kerner, ibid.)

s

4'— //
3_

2+

|

o._

-1 1 | I 1
o] 5 10 15 20
2
T

Fig. 8. Entropy per species as function of association tempera-
ture 6. (From E. H. Kerner, ibid.)
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186 PAUL A. LaVIOLETTE

One such observable is the ratio T_/T. This is the
fraction of time, T_/T, of a long time interval, T, spent by
a population below the average population level N; = q,. It
is expressed theoretically in terms of x as, T_/T=1(/x,
x - 1). (Figure 9 shows a graphical representation.) Note
that T, /T is just the compliment of T_/T.

At very low association temperatures, § << 7, i.e., when the
association is not far from the stationary state N, = q; (all 1),
the populations spend as much time above as below their
average levels, oscillating very roughly sinusoidally about these
levels. For very high temperatures, far from the stationary
state, the populations spend most of their time at below-
average levels, oscillating below in long shallow troughs and
above in short, high peaks. (Kerner 1959, p. 238.)
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Fig. 9. Mean below-average (T_/T) and above-average (T,/T)
times as functions of x. (From E. H. Kerner, Bulletin of Mathe-
matical Biophysics, 1959, 21, p. 238.)

Another observable, A4, the mean amplitude of
oscillation above average, is obtained by averaging the peak
differences, N, ~ q,, wher. N> q. Similarly, A_ is the
mean amplitude below average. It is expressed theoreti-
cally in terms of x as A, = (1/ T,/T) (xxe-x/x!) (Kerner
1959, p. 239) and similarly for A_ when (T,/T) is replaced
by (T_/T). Figure 10 shows a graphical representation of
this equation.

By taking an axis of value »=N/q horizontally
traversing the population curve, one may count the
number of times this axis is crossed by the plot (see Figure
11). This frequency of crossings is called w, (»). Theoreti-
cally, the axis »=N/q=1 should be crossed most fre-
quently. We then define ;e (v) a¢ the ratio of the
frequency of crossings about axis »=N/q, to the fre-
quency of crossings about axis » = 1. This relative fre-
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Fig. 10. Mean amplitudes of oscillation above (A, ) and below
(A_) average. (From E. H. Kerner, ibid., p. 240.)
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Fig. 11. Labrador fox-catches for the first 40 years of a
91-year period, after Elton (1942). Upper curve gives the catch
directly (left-hand scale); right-hand scale gives the reduced variable
n=N/q., Lower curve shows v(t). (From E. H. Kerner, ibid.,
p. 249.)

quency is found by theory to be a function of v and x,
(Kerner 1959, p. 241),

Wrer (V) = g_?;‘)f eXr (ve~¥)*r, (viii)

The axis v=1 is taken as having w,.; =1.00, and
theoretically all other axes chosen should be crossed fewer
times, so their w,.; should be less than 1.

From observations of [(N;/q,)- 1] 1n (N,/q,), T_/T,
Ay, and A_, a theoretical value, x, may be estimated for
X, and a plot of w;e; (v) as a function of v may be
constructed. Ratios of w,.; for different observed values of
v (i.e., different axes) may be plotted on this same graph
and these may be checked against the theoretically
predicted distribution.

For example, in Figure 12 the observed distribution is
represented by the connected points and the theoretically
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Fig. 12. Comparison of theoretical and observed cw;ei(v).
Abscissa is v in units of 0.16, which correspond to intervals of 50
fox-catches in Figure [1] 11.(From E. H. Kerner, ibid., p. 250.)

predicted coordinates appear as vertical limit bars. These
limit bars give the (w, v) coordinates for a range of x
between 1.5 and 2.0, since x is only an estimate calculated
from the data.

We have developed here a theoretical statistical tool
which may be used to test for the existence of predator-
prey relationships in any time series. The next step is to
see what kind of results we get when we test stock market
fluctuations.

TESTING THE TREND
FLUCTUATIONS OF THE STOCK MARKET

The graph shown in Figure 13 was drawn from a
logarithmic plot of the Dow Jones Industrial Average
(1897-1952). The average shown prior to the closing of the

market in 1914 consists of 12 industrial stocks and has
been adjusted to the postwar average of 20 industrial
stocks. The plot shown is a trend line, subjectively drawn
through the monthly high-low bars of the original Barron’s
plot, and is intended to represent a three or four month
moving average. (The monthly data points have been
omitted for graphical clarity.) Precise correspondence of
the trend line with minor market fluctuations is not of
vital importance since we are concerned here only with the
macroscopic movement of the market average, sample
points being sparsely chosen at half-year intervals.

Linear regressions of the trend line were made for the
periods (1) 1897-1926, (2) 1924-1938, and (3) 1931-1951,
and appear in Figure 13 as three straight lines. Regression
coefficients for the first and third periods were both found
to be about +0.017 log points per year; for the second
period, -0.0069 log points per year. If the third period was
chosen to begin in 1942, a much steeper regression
coefficient would have been found. We will denote the
data points with the symbol log N, and their “‘average
trend values,” lying along the regression line, with the
symbol log q(t). We may now write the straight line
equation for log q (t) as log q=mt+b, where m is the
regression coefficient, t is the time coordinate, and b is the
y intercept. On a linear graph this would plot as
q=emt + b_depicting an exponential long run increase in
the market. The period past 1951, not considered in this
study, may pose some difficulty for analysis because of the
large exponential trend factor.

Given these groups of data points for the market
trend fluctuations, we will proceed to calculate the
quantities (N/q - 1) In (N/q), T_/T, A4, and A_ for each
period. From these we will estimate an x for each period
and draw theoretical plots of w,¢; (v, x). Finally, we will
check these theoretical plots against the observed
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188 PAUL A. LaVIOLETTE

(v, x) quantities. If there is a good correspondence, we
will see this as evidence in support of the hypothesis that
market trend fluctuations exhibit predator-prey oscillatory
behavior.

The mathematical formulae presented in the last
section describe ensembles whose average value ¢ is
independent of time. For example, as is seen in Figure 12,
q is depicted as a horizontal line independent of t.
However, in the present circumstances we have a non-
equilibrium ensemble where G =2 ;. q, (t) (e¥r - v;) is a
near-constant of motion, i.e., the stock market average,
q (t), is exponentially increasing in value (see Figure 14).

To properly calculate x from N; and q, (t) we must
write Eq. (vii) as,

/%, = (Ne/qe (1)) - 11 In(N/q: (1)) (ix)

Each ratio N,/q, of the summation is calculated here using
a different g, value. The observables T_/T, A,, A_, and
wrer (¥) would then be estimated from analysis of a
semi-log plot such as Figure 13.

However, a slightly different approach was taken in
this paper: the N; values have been normalized such that,
when plotted on linear paper, their q, would appear as a
horizontal line. This was accomplished by subtracting out
the exponential trend factor from the data (see Tables 1,
2, and 3).

The data was read from Figure 13 using a log point
scale plotted to the right of the graph. This data was
entered in the column marked log N’, N’ indicating that
the data is in an unnormalized condition. From this
number the trend factor, §, is subtracted or added
depending on the trend slope (§ is simply the variable, mt,
calculated for each value of t.) The normalized data is then
entered in the column marked log N, and then translated
to N in the adjacent column. It is now in a linear form in
terms of Dow Jones Average points. From this column of

T ,

Fig. 14. Schematic diagram illustrating the moving interval T
involved in the canonical average, and the relatively long interval T,
of secular variation, together with the relatively short interval T; of
population. (From E. H. Kerner, Bulletin of Mathematical Bio-
physics, 23, 1961, p. 152)

Table I
1897-1926

y intercept: 1.553 log pts.

slope: +.0168 log pts./yr

(log N)

Date |logN'| 6 [(logN'-8) N [N/q [N/q-1)nN/q =y
1897 | 1.50| 0 150 0| |31%| .85|(15) (163)] .0245
1.47|.008(1.46 +2)| |29 | 79| (21) (236)| .0496
8| 1.55[.017|1.53 +(3)| |34 | 92| (.08) (.083)| .0066
158(.025(1.55 +(5)| |36 | 98| (.02) (020)] .0004
91 1.64].034|1.61 -(4) 40%(1.10| (.10) (.095) | .0095
1.73|.042(1.69 -(2)| |49 [1.33](.33) (285)] .0941
1900 | 1.70|.050(1.65 O 45 11.221(.22) (.191)| .0420
1.60(.059(1.54 +(1)| |35 | 95| (.05) (051)|.0026
1] 1.67].067(1.60 +(3){ |40 [1.08](.08) (.077)] .0062
1.731.076 [1.65 +(4)| |45 |122](22) (199)| .0438
2| 1.65].084(1.57 -(4)| [38 |1.03] (.03) (.030)|.0009
1.68.092[159 -(2)| [39 [1.06](.06) (.058)].0035
3| 1.68{.101[1.58 -(1)| |38 [1.03[(.03) (.030)| .0009
1.60(.109|1.49 +(1)| (31 | .84|(16) (174)|.0278
4| 152|.118(1.40 +(2)| |25 | .68](.32) (386)].1235
157|.1261.44 +(4)| |324| 88| (12) (128)] .0154

1905 | 1.70|.134(1.57 -(4) 37 |1.00| - - 0
176(.143 [1.62 -(3)| |41%(1.13| (13) (122)].0159
6| 1.81].151|1.66 -(1)| |45%|1.23](:23) (207)] .0558
1.84]1.160|1.68 0 48 [1.30( (.30) (.262)]| .0786
7| 1.83].168|1.66 +(2)| |46 [1.25]|(25) (223)] .0476
1.75[.176 [1.57 +(4)| |3741.02(.03) (03) |.0009
8| 1.63].185(1.44 +(5)| |28 | 76| (24) (274) | .0658
1.73].193[1.54 -(3)| |34%| .94|(.06) (.062)|.0037
9| 1.80{.202{1.60 -(2)| |[39%|1.07|(07) (.067)| .0047
1.84|.210|1163 O 42%4(1.15| (.15) (.140) | .0210
1910 | 1.85[.218(1.63 +(2)| [43 [1.17](17) (157)] .0267
1.78(.227|1.55 +(3)| |[35%| 96| (.04) (.041)|.0016
11 | 1.77|.235|1.53 +(5)| |34%| 93|(C07) (.073)] .0051
1.77|.244(1.53 -(4)| |[33%| .91|(09) (094) | .0085
1912 | 1.76[.252(1.51 ~(2)| |32 | .87|(13) (.139)].0181
1.82[.260(1.56 0 | |36%| .99|(01) (.010)|.0001
13 | 1.80{.269(1.53 +(1)| [34 | 92| (08) (.083)].0066
1.75|.277(1.47 +3)| |30 | .81|(.19) (211)|.0401
14 | 1.75[.286{1.46 +(4)| |29 | 79|(21) (.236)|.0496
1.75].29411.46 -(4)| |28%| 77| (23) (261)| .0600
1915 | 1.76.302[1.46 -(2)| |28%| .77{(:23) (261) | .0600
187[.311]1.56 -(1)| |36 | .98|(.02) (.020)|.0004
16 | 1.98].319|1.66 +(1)| |46 [1.25](25) (223)] .0558
1.99|.328|1.66 +(2)| |46 |1.24(25) (223)] .0558
17| 1.98|.336(1.64 +(4)| |44 [1.19](19) (.174)] .0331
195|344 [1.61 -(4)| [40%|1.10|(.10) (.095) | .0095
18 | 1.85|.361(1.49 -(1)| |31 | .89|(.16) (174)].0278
191(.370{1.54 0| |35 | .95|(05) (050)].0025
19 | 192|378 |1.54 +(2)| [35 | .95[(.05) (.050)].0025
2.04|.386|1.65 +(4)| |45 [1.22](22) (199) ] .0438
1920 | 2.02|.395(1.62 +(5)| [42 |1.14](.14) (131)|.0183
1.95(.40311.55 -(3) 35 951 (.05) (.051){ .0026
21 | 1.88].412(1.47 -(2)| |29%| .80[(.20) (.223)|.0446
1.83].4201{1.41 0 25% | .69 (.31) (371)].1150
22| 190|428 [1.47 +(2)| |29%| 80| (20) (223)| 0446
1.941.43711.50 +(3) 32 | .87((.13) (.139)] .0181
23 | 2.00[.445(1.55 +(5)| |36 | .98|(.02) (020) | .0004
1.96|.454(151 ~(4)| [32 | 87[(C13) (139)] 0181
24 | 1.96|.462(1.50 -(2)| [31%4| .85|(.15) (163)] .0245
2.00(.470(1.53 O 35 951 (.05) (.051)] .0026

1925 | 2.05|.479|1.57 +(1) 37 |1.00 0 0
2.12|.487(1.63 +(3)| |43 [1.17{(17) (157)]|.0267
1926 | 2.18|.496 |1.68 +(4)| |48%[1.32](:32) (278)| .0890
2.19|.504(1.60 -(4)| [48%(1.32{(:32) (278)|.0890
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Table 11

1924-1938

y intercept: 2.19% log pts.
slope: ~.0069 log pts./yr

Table 111

1931-1951
y intercept: 1.965 log pts.
slope: +.0167 log pts./yr

(logN)
Date [logN'| 3 |(log N'+§) N | N/q |(N/g-1)AnN/q| =

(logN)
Datc {logN'| & |(log N'~6) N |N/q |{(N/g-1)AnN/q| =—

1924 [ 196] 0 |196 0 91| .54((46) (777) | .358
2.00(.003[2.00 +(3)| |101| .60|(.40) (916) | .368
1925 | 2.05(.007(2.06 -(3)| |114| .68|(.32) (.386) | .124
2.12[.010{2.13 0| [135] .80{(.20) (.223) | .045
6 |2.18[.014[2.19 +(4)| [156| .93|(.07) (.073) | .005
2.19(.017(2.21 -(3)| |161| 96|(.04) (041) | .002
7 | 220(.021(2.22 +(1)| |166] 99|(.01) (010) | ©
2.24.024 226 +(4)| [184]1.10](.10) (.095) | .009
8 |230].028(2.33 -(2)] [213[1.27[(27) (239) | .065
2.36|.0312.39 +(1)| |[246|1.46|(.46) (378) | .174
9 | 2.450.035(2.49 ~(5)| [305[1.81(.81) (.593) | 480
2.53|.038(2.57 -(2)| [370(2.201.20) (.788) | .946
1930 | 2.48].041{2.52 +(1)| [332]1.97|(97) (678) | 657
2.37{.045 |2.42 -(5)| [260|1.55|(.55) (.438) | 241
1|225/.048(2.30 -(2)| [199]1.18[(.18) (.166) | .030
2.14].052(2.19 +(2)| {156 .93|(.07) (.073) | .005
2| 1.95|.055|2.01 -(5)| [101| .60((.40) (.916) | 366
1.65|.059|1.71 -(1)| | 51| .30((.70) (1.20) | .840
311.82].062[1.88 +(2)| | 76| .45|(.55) (.799) | 440
1.92].066(1.99 -(4)| | 97| .58((.42) (545) | 229
4|202[.069(2.09 -(1)| [123| 73|(27) (315) | .081
1.98(.072(2.05 +(2)| [113| .67|(.33) (.400) | .131
1935 | 2.01].076[2.09 -(4)| [122| .73{(27) (315) | .085
2.07(.079(2.15 -(1)| |141| 84{(.16) (.174) | .028
6| 2.15[.083[2.23 +(3)| [171]1.02{(.02) (.020) | .004
2.20|.086(2.29 -(4)| |[193]1.15](.15) (.140) | .021
71225(.090234 0| [218]1.30((.30) (.262) | .079
2.241.093[2.33 +(3)| [215(1.28((.28) (.247) | .069
1938 | 2.10/.097(2.20 -(3)| [157| 93|(.07) (.073) | .005
2.07/.100{2.17 0 | [148| .88[(.12) (.128) | .053

N, a mean is determined and called q (q = N). Next, the
ratio N/q is calculated for each data point N, q remaining
invariant. Finally, the quantities (N/q- 1) In(N/q) are
determined for each value of N/q. The mean determined
from this column is the quantity 1/x. Whereupon, the
inverse temperature-like quantity x is determined to be 34,
5, and 19 in each of the three periods studied. Figures
15-a,b,c show a linear plot of the normalized data N vs.
time. The horizontal line in each case indicates q.

The advantage of the normalization approach is that
the data can be displayed on a linear plot and the
quantities T_/T, Ay, A_, and wy¢; (¥) can be more easily
read from the graph. However, it must be realized that this
could potentially introduce a certain amount of error into
the data. So, to put this approximation in perspective, the
values of x were calculated for the first two periods using
formula (ix), the “proper method”, and found to be 30%
and 5.1%. When these are compared with the values of
34, and 5.0%, determined by the normalization approach,
we see that the approximation is within reason.

The calculations of A,, A_, and T_/T for the three
periods are shown in Tables 4, 5, and 6 under subheadings
(1) and (2). These values were translated into predictions

1931 [ 225| 0 |2.25 0| |178 |1.84 | (.84) (610)|.5124
2.14(.008(2.13 +(2)| [135[1.39 | (.39) (.329)].1283
32 | 1.95[.017]1.93 +(3) 86 | .89 | (.11) (.117)].0129
2 1.65[.025(1.62 +(5)| | 47| .48 | (52) (.734)].3817
33| 1.82(.034(1.79 -(4) 61| .63 | (37) (462)].1709
1.92(.042(1.88 -(2) 75 | .77 | (:23) (.261)]|.0600

34 | 2.02(.050{1.97 0 93 | .96 | (04) (.041)!|.0016
1.98 [.059(1.92 +(1) 83| .86 | (.14) (.150)|.0210
1935 | 2.01(.067|1.94 +(3)| | 88| .91 | (.09) (.094)]|.0085
2.07[.076(1.99 +(4)| | .99 [1.02 | (02) (.020)].0004
36 | 2.15(.084(2.07 -(4)| [117|1.21 | (21) (182)].0382
2.20|.092(2.11 -(2)| [128 |1.32 | (:32) (.278)].0890
37 | 2.25(.101{2.15 ~(1)| [141|1.45 | (45) (372)|.1674
2.24(.109]2.13 +(1)| |135|1.39 | (39) (.329)].1283
38 | 2.10[.118{1.98 +(3)| | 96| .99 | (01) (.010)]|.0001
207.126]1.94 +(4)| | 88| .91 | (09) (.094)]|.0085
39 | 2.15(.134(2.02 -(4)| |104 |1.07 | (07) (.068)|.0048
2.16 |.143{2.02 -(3)| [104 |1.07 | (07) (.068)].0048
1940 | 2.16.151|2.01 -(1)| [103 [1.06 | (.06) (.058)].0035
2.14(.160{198 0 96 | 99 | (01) (.010)].0001

41| 2.11|.168(1.94 +2)| | 88| 91 | (.09) (.094)|.0085
2.09(.176|1.91 +(4)| | 82| .85 | (.15) (.163)|.0245
42| 2.05(.185{1.86 +(5)| | 73| .75 | (25) (.288)|.0720
2.01(.193{1.82 -(3)| | 66| .68 | (32) (386)].1235
43| 2.08(.201|1.88 -(1)| | 76 | .78 | (22) (.248)|.0546
2.14].210[193 0 85| 88 | (12) (.128)].0154

44 | 2.14(.218(1.92 +(2)| | 84| .87 | (13) (.139)|.0181
2.15(.227(1.92 +(3)| | 84| 87 | (13) (139)].0181
1945 | 2.18[.235]|1.94 +(5) 88 | .91 | (.09) (.094)|.0085
2.22.244{1.98 -(4)| | 95| 98 | (.02) (.020)].0004
1946 | 2.28|.252|2.03 -(2)| [107 (.10) (.095).0095
2.31[.260(2.05 0 (.15) (.140)|.0210

47 | 2.25|.269(1.98 +1)| | 96| 99 | (01) (.010)|.0001
2.25(.277(1.97 +(3)| | 94| .97 | (03) (.030)|.0009
48 | 2.25(.286(1.96 +(4)| | 92| .95 | (.05) (.05) |.0025
2.251.294]1.96 -(4)| | 90| 93 | (07) (.073)|.0051
49 | 2.25(.302|1.95 -(2)| | 89| .92 | (.08) (.083)|.0066
224311193 -(1)| | 85| .88 | (.12) (.128)].0154
1950 | 2.30|.319(1.98 +(1)| | 96| .99 | (01) (.010)].0001
2.33(.328(2.00 +(2)| [100|1.03 | (:03) (.030)].0009
1951 | 2.37|.336/2.03 +(4)| [108 |1.11 | (.11) (.104)|.0114
240|.344(2.06 -(4)| [114[1.18 | (.18) (.166)].0299

—
—_
()
——
—
w o

of x using Figures 9 and 10, and were entered under
subheadings (3) along with the N/q determinations.

Next, theoretical and observed (w;e;, ¥) coordinates
were determined and tabulated under subheadings (4). The
estimated value of x, determined from subheadings (3),
was used in formula (viii) to determine the theoretical
(wre1, ¥) coordinates for each period. For example, for the
first and third periods, x was estimated to be around 20.
So, then taking the log of formula (viii), we get log
(wre1) =20 + 20 (log v - v). Substituting a range of » into
the equation, a theoretical distribution of w;., is deter-
mined.

The observed relative frequency data was obtained in
the following way. Various horizontal v axes were chosen
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to traverse the plots shown in Figures 15-a,b,c. For
example, see Figure 15-b where the axes have been
indicated by dashes to the right of the plot. The number of
times that a particular axis (» = N/q) was traversed by the
plot was recorded as the w, for that axis. A tangency was

w, @
k (—) was then

considered as a single crossing. The ratio
(&

calculated for each axis to determine its w,¢; value.
Figures 16-a,b,c show a comparison of theory with
observation for the (w;e;, ¥) coordinates. Period 1 shows a
close approximation between theory and observation;
period 2, a very close approximation; period 3, not as
close. Two theoretical curves were plotted for period 2 to
show how the shape of the theoretical ., distribution

Table IV
Calculations—Period 1 (1897-1926)

(1) Ay=N-d/q (q=37) A_=q-N/q
N N-gq N q-N
49 12 29 8
45 8 I _ 35 k2
48 1. | P T 24 2 12
43 6 " 'y 27 10
46 9 A_=17.56/37= .20 32 5
45 8 28% 8%
654 31 6
9 25% 11%
3% | _ 5%
9168
7.56
(2) T_/T=33/60= 55
(3): Estimation of x
(a) ﬁf} x> 15
(b) T_JT x> 15
(2= l)ﬂny‘—»x =34
q q
(4): (wyey, ») coordinates
_theoretical wrer
(for x = 20) observed wye;
v Wrel v Wrel
D 05% .67 08
.6 19 76 39
7 42 .79 69
8 70% .81 77
9 92 .84 85
1.0 1.00 94 1.15
1.1 92 1.00 1.00
12 76% 1.10 1.00
1.3 56% 1.16 92
1.4 38 1.22 97
1.5 24 1.24 46
1.30 31
1.34 08

changes as a function of x. Period 3, a transition period for
the stock market, spans both the high temperature period
of the 30’s and the low temperature period of the 40’s, so
the odd shape of plot-b does not come as a surprise. Period
1 (see Figure 15-a) is a good example of an ensemble in
thermodynamic equilibrium. Note the gaussian shape to
the plot observed in Figure 16-a. Theory predicts this
distribution to be sensibly normal at low temperatures
such as x =20. Period 2, the period of the great stock
market crash, shows an unusually close correspondence to
theory despite the relatively few cycles available for data
analysis. The plot in Figure 16-b shows a skewed w;.; plot
characteristic of a high temperature distribution.

In conclusion, the results here show strong evidence
of predator-prey behavior in stock market trend fluctua-
tions. Also, a high temperature period is evident between
1924 and 1938, during which time the market appears to
have temporarily deviated by a significant amount from
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Table V
Calculations—Period 11 (1924-1938)

(1) Ay=N-a/q (q=168)

A, =126/168=.75
A_ =86/168 = .51

(2) T_/T =8%/15=.55
(3) Estimation of x

(a) §+}———»x= 1.7

(b) T_/T x>15
N _ N L5 s
(C)<q l),an x=5

(4): (wrey, ¥) coordinates

wre theoretical

v x=2) (x=15) Wre) Observed

.30 36% .08 25

48 .65 .34 .50

.65 .85 .67 a5

.88 98% .96 1.00
1.00 1.00 1.00 1.00
1.13 98% 96 1.00
1.30 .92% 83 75
1.50 .82% .62 —
1.67 I3 45% .50
2.00 .54 15% -
2.20 .36 08 25

the near equilibrium regime. This suggests that the market
crash in 1929 may not have been produced by exogenous
factors but was caused by a temporary failure of the stock
market to properly price itself relative to the economy.
Thus there is reason to believe that, during the period
1926-1929, the stock market as an aggregate has shown a
period of excessive inefficiency.

Efficient market theory would maintain that, during
this period, individual stocks were efficiently priced
relative to the whole market. However, when our frame of
reference shifts from the micro level to the macro level, a
different picture emerges. The stock market as a whole
during this period appears to have behaved as a “hot issues
market” where the preceeding inflated market prices
appeared to foster further market inflation, driving the
market into a temporary inflationary spiral.

PERIOD I

67 8 9 1011 1213 14

Vv —

Fig. 16-a.

191
Table VI
Calculations—Period 111 (1931-1951)
(1) A,=N-g/q (q=97) A_=q-N/q
N N-q N q-N
141 44 - - 47 50
104 I e L 83 14
112 15 88 9
3166 =23/97 = 66 31
lZ A_=23/97= 24 85 12
s[16
23

(2) T_/T=12%/21=.59
(3): Estimation of x

A :
@ \F KIS

(b) T_/T——x=2%
N NN
(c) (q— 1) J\nq»x 19

(4): (wye1, ») coordinates

(theoretical wye for x = 20 —-see table I'V)

PERIOD I
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Fig. 16-c.

observed @iy

Wrel

13
25
.38
.50
.62
.87
1.12
1.00
.87
I8
62
.38
.25
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TEMPERATURE AND MARKET VARIABILITY

The concept in present financial theory which most
closely corresponds to the market temperature 6 is the
market factor variance o2, .

e ilieraly W BB, | B0

P = value of the market.

This is compared to 1/x; = /7., which is

0lr, = ——5— where g, = N,.

The Py _ ; factor in the denominator of every R, term in
(x) tends to serve the same purpose as the g2 term in (xi).
Both normalize the summation with respect to the
ambient level of the market. Although this is done
statistically in different ways, we may still write, without
loss of rigor, that 1/x, is proportional to (o, )?.

Let us verify this. Figure 17 shows the one year o,
plotted from 1897 to 1969. Figure 18 shows the ten year
plot of o, during the depression. From these we estimate
o.m for the first period (1897-1926) to be about 0.04%;
for the second period (1924-1938), about 0.12. Taking the
ratio of the squares, we get (0,/0,)% = (.12/.041%)% = 7.2.
Taking the ratio of the 1/x quantities for those same
periods, we get (1/x;)/(1/x,)=either .2/.029=6.9, or

.32
|

.2y
1

|

.16

EXCHpmr  Closid

.08
L

MOVING SERIES OF ONE YERR S,D.

-.00

.08

044

MOVING SERIES OF TEN ‘.IEAR S.D.

/1919 5/1927 9/1935 V944 5/1952 91960
TIME

Fig. 18.

.2/.0327 = 6.1, depending on whether Eq. (vii) or (ix) was
used for the calculation. Thus there appears to be a fairly
close correspondence between 1/x, and o?, .

Robert Officer, in his (University of Chicago) doc-
toral dissertation, part 2, entitled “The Variability of the
Market Factor of the New York Stock Exchange,” deals
with the question why there has been a decline in the
market factor variability since 1926. He presents argu-
ments against a number of traditional explanations, these
being (1) the formation of the SEC, (2) the establishment
of margin requirements, (3) the changing composition of
stocks (types of companies or enterprises) listed on the
N.Y.S.E.

He studied the relationship between industrial pro-
duction and the market factor, using autocorrelation

1/1897 5/1905 9/1913 1/1922

5/1930
TIME

9/1938 1/1917 5/1956

T 1
9/196L 1/1959

Fig. 17. The behavior of the one year standard deviation of the monthly returns of the market factor. (From R. R. Officer, University of

Chicago Graduate School of Business, dissertation, 1971.)

Vi6L



THE PREDATOR-PREY RELATIONSHIP IN STOCK MARKET 193

models, and found that the time series behavior of
industrial  production relatives during the period
1929-1944 was distinctly different from that of the
periods 1919-1929 and 1944-1969; moreover, that the
autocorrelation models for these latter two periods were
identical with almost identical values for the parameters.
He states (Officer 1971, p. 28):

This evidence supports the hypothesis that the return to
normality of the market factor after the 1930’s reflected the
economy as a whole and not any action taken with the specific
aim of regulating the behavior of the market.

Earlier in his paper he notes (p. 10):

.. .the variability of the market factor before the 1930’s is
similar to that after about 1942. It is apparent that the decline
in variability observed by other studies* is better described as
a retun to normal levels of variability after a period of
abnormal behavior in the 1930’s.

BIO-ECONOMIC IMPRESSIONS

As a sequel to Officer’s observations, the following
hypothesis is presented, based on our bio-economic
analogy of stock market behavior. It is here believed that
the market and economy were in thermodynamic equilib-
rium at a low prevailing temperature prior to period 2
(1924-1938); that during this period a significant and
rather sudden change occurred in the stock market,
whereby its temperature increased by 6 or 7 fold. This
high level of excitation, being exhibited by the extreme
over-valued and under-valued swings of the market, indi-
cates that the “internal energy,” G, of the market had
been raised. The subsequent, rather rapid, decay of these
fluctuations to their initial temperature at thermodynamic
equilibrium indicates that during the high temperature
period the market was in a non-equilibrium, inefficient
state with respect to the rest of the economy. Due to the
coupling of the stock market with other species in the
economy, a phenomenon of “heat flow” took place,
whereby the internal energy of the stock market became
dissipated into the surrounding economy. As a result, the
whole system proceeded towards a state of maximal
entropy, thermodynamic equilibrium. Thus, as the stock
market temperature dropped, the temperature of its
ssociated species (i.e. bond markets, banks, accounts
payable, currency exchanges, foreign money markets) was
temporarily increased. Figure 19 shows how other eco-
nomic species were affected by the crash. Note the strong
coupling with the corporate bond market.

As the world economy gradually recovered from the
effects of the depression, thermodynamic equilibrium was
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Fig. 19. Comn.on stock prices, interest yields, and discount
rates of Federal Reserve Bank of New York, monthly, 1929-March
1933. (From M. Friedman and A. Schwartz, The Great Contraction,
Princeton University Press, 1967, p. 8.)

once again restored. However, the depression had, as a
result, a considerable erroding effect on the carrying
capacity of the economy. Note the downward offset in the
market regression line in Figure 13.

One question which arises is, why did the market
become so over-valued during the period 1926-1929? Why
did it continue to be bullish when, according to the
prevailing market temperature at that time, a bearish
market was in order? In other words, why did the New
York Stock Exchange become a hot market? In seeking an
explanation of the great crash, historians and economists
may do well to focus on this pre-crash period. They may
find this to be a classic example where the functioning of
our economic system spontaneously deviated from its
expected behavior as a result of the unpredictable human
element.

*King, “Market and Industry Factors in Stock Price Behavior,” 139-190; Blume, “The Assessment of Portfolio Performance,” 1968; Fisher

and Lorie, ““Some Studies of Variability of Returns,” 99-134.
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